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Abstract

This paper investigates the concept of parametrics in the perspective of exchanging parametric data models between
heterogeneous systems either in the context of product data exchange (STEP), or in the context of parts library ex-
change (P-LIB). We first analyse the different approaches to parametrics and we propose a taxonomy based on their
underlying mathematical structure. We then present the architecture of an information model that would enable the
exchange of the different kinds of parametric models between different systems. We use the capabilities of the EX-
PRESS language and of the EXPRESS-G notations to formally define the proposed model. This model involves a four
layers architecture and proposes to represent, and to exchange, not only the current instance and its parametric def-
inition, but also an abstraction mechanism, called the dynamic context, that captures the invariant of all the possible
instances, and the logical representation that provides an autonomous representation of these invariant. We then dis-
cuss the different kinds of parametric functions and we propose both a set of generic resources and a set of constraint-
based parametric functions that might constitute a starting point for the standardization effort. This framework, that
may also be used as a basis for system implementation, does not require any change in the existing (STEP) or emerging
(P-LIB) Standards.

1. Introduction

STEP (Standard for the Exchange of Product Model Data, officially ISO standard 10303)  is a series of in-
ternational standards whose purpose is to define data across the full engineering and manufacturing life cy-
cle. STEP is gaining wide acceptance in industry and its importance is becoming increasingly recognised.

Among the list of requirements stated in the early days were mentioned a product model core,  application
data requirements, data management, a mechanism for standard parts, parametricdesign features, and data
syntax and file structure independent of the models content. Ten years later, the initial release of the STEP
comprises twelve parts which, with reference to the original target, still omits parametrics.

In the mean time P-LIB (Parts Library, ISO 13584) has been developed [Pierra 94c]. This multi-part spec-
ification is a series of standards for the computer-sensitive representation and exchange of parts library data.
Its objective is to provide a mechanism capable of transferring parts library data, independent of any appli-
cation which is using a parts library data system. The nature of this description makes it suitable not only
for the exchange of files containing parts, but also as a basis for implementing and sharing databases of parts
library data.

The question of parametrics is crucial for such a topic, and a great deal of work has been undertaken in order
to clarify the concept of parametrisation, and its relationship to the concept of a product. P-LIB adopts a
generative perspective on parametrics. For P-LIB, parametrisation is related to the concept of a class. A
product class is a set of products which are described together, which are assigned a common name, and
whose instances may be distinguished from each other by the values of some parameters called product (or
part) identification characteristics. Fixing the identification characteristics within the class fully identifies
the productinstance. A representation class is a set of representations which are described together and
whose instances may be distinguished from each other by the values of some well defined parameters. Fix-
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ing these parameters within the class fully specifies the representation instance. A shape class, also called
a (geometric) parametric model, is a representation class. Each instance shall be fully defined by its param-
eter values. To avoid data blow-up, the requirement of P-LIB is to capture globally the class level in such
a way that every instance may be generated from this implicit description in a deterministic way.

Two years ago, a new Working Group was established within ISO TC 184/SC4 with the goal to provide
parametrics capabilities to the different SC4 standards. The first step was difficult due to problems related
to reaching an agreement about a common definition of the concept of parametrics, the requirements to be
addressed, and the methodology to be followed. Progressively, the different kind of requirements became
more precise, and it is now possible, to propose a global framework for introducing parametric capabilities
both in STEP and in P-LIB.

The purpose of this paper is to propose such a framework. This framework is based on a previous proposal
[Pierra 94a] [Pierra 94b]. It enlarges its scope to be able to integrate the requirements that emerged later on.
This paper does not present a complete and finalised information model for parametrics: the technology is
still not mature enough and continues to evolve. Its goal is more to clarify and to discuss the concept of
parametrics, to provide hooks for later development, and to propose a complete approach for one of the clear
requirements that emerged in particular from the P-LIB development team: the availability of a generative
parametric data model.

This paper is organised as follows. In the next section, we propose a taxonomy of parametrics according to
its underlying mathematical structure. This taxonomy enables a more precise identification of the require-
ments to be addressed. In the third section we discuss the commonalities of all the parametrics approaches.
The very specific feature of parametrics is to gather the class level, in fact some kind of program either de-
clarative or imperative, with one specific instance that represents one example of the program result. We
call this example thecurrent instance. We discuss the relationships between the program and the current
instance, and we introduce the concept of dynamic context and its possible data model. We finally present
a data model for parametrics variables and we propose a global architecture for parametrics modelling. In
the fourth section of this paper we present a taxonomy of the required parametric functions. Canonical para-
metric functions enable to associate each attribute value with an expression that specifies this value. Whole-
part modelling provides for a modular decomposition of parametric models. Constraint-based functions en-
able to create new items through their relationships with pre-existing items. Finally, control-structure func-
tions provide for alternative or repetitive shape aspects in a class of shapes. For these different functions,
data model architectures are defined. In the last section we briefly outline the implementation already
achieved, and the on-going work.

In all this paper, we define formally the proposed information model using the EXPRESS language and the
EXPRESS-G notations [ISO 10303-11]. We often reference the resources defined in Part 41, 42 and 43 of
STEP [ISO 10303-41] [ISO 10303-42] [ISO 10303-43]. To characterize the entities which are formally de-
fined by an EXPRESS information model (either in STEP or in our proposed parametric model), we write
their names inbold font.

2. A mathematical taxonomy of parametric models

Over the last few years, a much work has been involved with ensuring more flexibility of a designed shape.
The different approaches, often grouped under the name parametrics, address three very different problems.
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2.1. Equality-based parametrics

The declarative approaches to parametrics [Sunde 87], and in particular variational geometry, consist of ge-
ometry problem solving: "given a model with a sufficient number of geometric constraints and a topological
or approximate geometric description, we want the precise model to be evaluated automatically" [Roller
89];. The solution may be unknown to the user. He or she states the constraints. The role of the system is to
compute the (possible) solution(s).

Mathematically, let P be the set of parameters defined over a domainD, P (often P = Rn), and let S (shape)
be the set of variables for which the values (points, curves, numeric values,...) are required to describe an
explicit instance (S belongs to the set S of all the possible shapes). A declarative model is an equation :

A(P, S) = 0; P∈ D, S∈ S ;

where A is an operator which is, generally, neither linear nor convex. We call such a structure anequality-
based parametric model.

Many methods have been used to solve this problem: algebraic approaches, often based on the Newton-
Raphson iterative method [Hillyard 78] [Light 82] [Lee 82], inference engine [Sunde 87] [Aldefeld 88],
Buchberger's Gröbner Bases Method [Chou 84] [Chou 87], constraint graphs [Owen 91] [Bouma 95], and
many others [Dufour 90] [Kin 89]. The popular 2D "sketcher", available on various CAD systems, corre-
sponds to this approach.

Unfortunately, there are only partial solutions that address specific problems [Verroust 90]. Even if a lot of
progress has been achieved since the precursory work of Sutherland [Sutherland 63], this approach has three
intrinsic limits.

(1) The problem has, in general, exponentially many solutions. Even in the simple case of 2D points with
distance constraints, each couple of constraints define two possible solutions. To over-constraint the model
makes the problem NP-complete [Bouma 95]. It is therefore impossible to compute "the precise model". At
the best "one precise model, orall precise models, may be computed.

(2) When the degree of some equations become greater than four it is impossible, in general, to compute all
the solutions. Onlysome solutions may be (numerically) solved.

(3) To support only non-oriented constraints would forbid the use of all the procedurally-defined modelling
constructs (e.g., sweeping, CSG, feature-based modelling) that leads to oriented constraints.

The example presented in figure 2.2, from [Bouma 95], shows that the first limit is a serious one. The same
simple equality-based 2D parametric model may have very different kinds of solutions. Even if each spe-
cific sketcher uses specific heuristics, that often propose the "intended" solution, no general mechanism has
yet been proposed that might ensure the determinism of the solving process, and, therefore, that the same
solution is generated by two different solvers using the same set of equations.

These limits bound the present scope of equality-based parametric systems: to user-friendly design of 2D
sketches, with often-successful or interactively-controlled solvers [Bouma 95], or to 3D solid model posi-
tioning [Kramer 92]. Progressively, some larger classes of problems will be covered, but, due to its under-
lying mathematical basis, this approach alone will never cover the whole set of requirements concerning
parametrics.

2.2. Functional parametric model
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The functional approach to parametrics, also referred to as constructive [Roller 89], addresses a very differ-
ent problem: given a class of shapes whose design process is well known, and which may be supported by
the interface of some design system, we want any instance, characterised by its parameter values, to be gen-
erated automatically in a deterministic way. We call such a structure afunctional parametric model.

Mathematically, using the above notations, a parametric model is a function:

F: D S ; S = F(P)

Where F is the function that defines the instance from its parameter values.

Since the domain D is often non-specified, the function may "fail". This means that the parameter values do
not belong to the domain D. Nevertheless, for all sets of parameter values that belong to D, the parametric
model defines exactly one instance.

Various prototypes, compared in [Solano 94], and several commercial products are based on this approach.
They address both 2D and 3D models. They may support feature-based design [Hoffman 92] [Roller 95],
control structure with alternative or repetitive shapes, and they may generate variant programs [Pierra 94b].

An important characteristic of functional parametric models is that the function F is always expressed as a
composition of functions:

F = fn fn-1 ... f1

where each function duplicates, as part of its result, its input parameters:

fi : E1,i x E2,i x .. xEp,i -> E1,i x E2,i x .. xEp,i xEp+1,i.

We call thefi functions, theparametric functions.

The major limit of this approach is that the built-in parametric functions constitute the only (functional) con-
straint that may be captured. It is neither possible to constraint a circle to be tangent to three lines if such a
(functional) constraint is not explicitly available, nor to specify cyclic constraints.

Moreover, for some 2D problems that may be easily specified through equality constraints, such as the one
presented in figure 2.2, the specification as a functional parametric model is much less user-friendly (see
fig. 2.6).

But this approach has one major interest. Provided that each parametric function is really specified as a
function, i.e., with only one result (as it is done, for example in figure 2.3), the solving process is determinist
and independent of the solver.

Besides its generative capabilities, that may be required in some contexts, this approach has two other in-
terests:
(1) it may be used for any kind of modelling system, whether it is 2D or 3D, based on constructive solid
geometry (CSG) or on Boundary representation (B-rep), and
(2) it may support very high level modelling constructs such as Boolean operation on B-rep models or fea-
ture-based modelling.
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2.3. Inequality-based parametric model

A third category of parametric models involves only inequations. It may be stated, using the above nota-
tions, as:

A (P,S) ³ 0 ; P∈ D, S ∈ S
Obviously, such a model is not intended to generate any instance. Capturing inequality constraints may ad-
dress two requirements: (1) to control the allowed model modifications (for instance for design re-use pur-
poses), or (2) to check whether the material product that results from a manufacturing process fits with a
toleranced geometric model.

We quote such a model only because it shall be taken into account within a modelling architecture intended
to support general parametrics capabilities.

2.4. Hybrid parametric model

The goal of the above taxonomy is to point out both the strengths and weaknesses of each mathematical
approach to parametrics. As a result of the intrinsic weaknesses of each approach, few commercial products
are restricted to only one of these approaches. Although all the 3D systems we know follow the functional
approach for the 3D shape design constructs, most of them support equality-based parametric definitions of
2D-contours, and some of them support equality-based parametric positioning of 3D shapes.

From a data modelling point of view, this means than no parametric systems useonly non oriented con-
straints. Therefore, the generic structure of a parametric data model may be defined as a set of constraints,
each constraint requiring that some already existing entities are available (modelled in figure 2.1 through
theassumed attribute of aconstraint) and constraining a set of other entities (definedattribute). If different
entities are involved in theassumed ordefinedattribute of some constraints, their roles are, in general, non
identical. Therefore theassumed and thedefined attributes shall correspond to a list (that may be empty
for theassumed list).

A functional parametric data model is a subtype of such a generic structure. For this subtype:
1) each constraint is a function, and
2) the constraints are ordered (composition of functions), and
3) some variables, clearly identified, define the domain (parameters) of the global parametric function.
This is shown in the figure 2.1 using the EXPRESS-G symbolism defined in [ ISO 10303-11]

Fig. 2.1 : Planning model of a parametric information model
In this data model, bothconstraints andparametric_functions are defined as abstract supertypes. They
shall be specialised for each specific constraint or parametric function. Theparameter entity is defined in

parametric_function
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section 3.3 together with its relationship. The entities referred to by thedefined, assumed,
current_instance andlogical_representation attributes are discussed below.

The goal of the framework defined in this paper is to support this kind of hybrid parametric data model. it
also provides for possible specification of pure equality-based and/or inequality-based models.

2.5. Example

The following example, from [Bouma 95], illustrates the difference between equality-based and functional
parametric models. The designer creates the sketch (a) and provides the following values: d1 = d2 = 50; a1
= a2 = 30¡ ; r = 30.

When the solver is invoked, it may return (according to its internal structure and heuristics) any of the three
solutions (a) (b) or (c).

Fig. 2.2 : Three different solutions for the same equality-based constraint schema

Assuming, like [Bouma 95], that the user's intention is clearly to round the two adjacent segments, (irre-
spective of  the angles a1 and a2), this parametric contour may also be specified, less easily but in an unam-
biguous way, as a functional parametric model.

We assume, here, that the functional parametric system supports the parametric functions specified in [ISO
DIS 13584-31] (see figure 4.8), and that a display computer enables the user to specify graphically any kind
of algebraic (or geometric-numeric, see section 4.1.3) expression.

It has already been underlined that parametric functions should be unambiguous, therefore each ambiguous
geometric construct must be specified individually together with an ambiguity removal mechanism. For in-
stance, in [ISO DIS 13584-31], ambiguity removal is based on entity orientation. Figure 2.3 graphically il-
lustrates the specification given in that standard for the function "arc_fillet_2_ent" (that creates a fillet
between two entities that may be trimmed lines or circular arcs) when the two entities are two trimmed lines.

The specification is the following:
(1) the two trimmed lines are to be shortened, and joined by a circular arc; this circular arc:
(2) is to be oriented from line 1 to line 2 (black arrows), and
(3) is to be the circular arc with the smaller radial angle that fulfils condition (2), and
(4) is to be the circular arc that shortens to the greatest extent the trimmed line, line 1 (first parameter of the
function).

Such a specification, together with the capability (through asame_sense parameter in the parametric func-
tion domain) to specify for each involved entity whether the orientation to be considered is the actual entity
orientation (same_sense = TRUE, grey arrow), or its opposite (same_sense = FALSE), enables an unam-
biguous definition of the parametric function "arc_filet_2_ent".
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r
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Obviously, this ambiguity removal process is hidden to the interactive system user: the system uses the
picking ordering and positions (shown as 1 and 2 in figure 2.3) both to order the two involved trimmed lines
and to generate the ambiguity removers.

Fig. 2.3 : Specification of the function Arc_fillet_2_Ent

Using this function, the parametric contour shown in figure 2.2(a) may be specified interactively and un-
ambiguously as a sequence of parametric functions.

We first note that the circular-arc always shortens the two trimmed lines. Therefore, the designer draws,
first, the two lines without the fillet (see figure 2.2(a)).

Figure 2.4(a) and 2.4(b) shows that the length of the two trimmed lines are to be extended by a lengthl. This
length is defined in any case (see figure 2.4) by:

l = F(r;|tg(360¡ -a1 -a2 -90¡)|)
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Fig. 2.4: Hierarchical design of the contour

Using only the parametric functions specified in [ISO DIS 13584-31] (which deal with bounded curves:
segment lines, circular arcs,...), the parametric contour may be built as shown in
figure 2.5 and may be recorded as the functional parametric model shown in figure 2.6.

As we will show below, this parametric model itself may then easily be captured as an EXPRESS data mod-
el using a meta-programming approach [Ait-Ameur 95] and, in particular, the expression schema defined
in [ISO DIS 13584-20].

Fig 2.5 : The interactively designed contour

Pnt_1 := Create_Cartesien_Point (0, 0)

Var_1 := 360 - a1 - a2 - 90

Var_2 := r/ABS (TAN (Var_1 / 2))

Pnt _2:= Create_Cartesian_Point (d1 + Var_2, 0)

Line_1 := Create_Line_2_Pnt (Pnt_1, Pnt_2)

Dir _1 := Create_Direction_2_Pnt (Pnt_1, Pnt_2)

Dir _2:= Create_Direction_Angle (Pnt_2,  180¡ - Var_1)

Line_2 := Create_Line_Pnt_Length_Direction (Pnt_2 , d2 + Var_2, Dir_2)

Line_3 := Create_Line_Pnt_Length_Direction (Pnt_Extremity _Ent (Line_2), 180¡ - a2, 1000)

Line_4:= Create_Line_Pnt_Length_Direction (Pnt_1, a1, 1000)

Pnt_3 := Pnt_Intersection_2_Ent (Lin_3, Lin_4)

Line_5:= Create_Line_2_Pnt (Pnt_Extremity (Line_2), Pnt_3)

Line_6:= Create_Line_2_Pnt (Pnt_3, Pnt_1)

Curve_1:= Arc_Fillet_2_Ent (Line_1, TRUE, Line_2, TRUE)

Fig 2.6 : The functional parametric model

2.6 User interface issues

It should be noted that the way in which the constraints are captured from the user, and possibly displayed
and modified, is orthogonal to the data structure taxonomy.

Even if functional parametric models are often captured during the design process (and therefore sometimes
considered as history-based) and equality-based or inequality-based constraints often captured as a separat-
ed process, it is perfectly feasible for a parametric system:
1) to capture equality-based constraints during the design (some commercial systems already do this);
2) to edit functional constraints and to allow changes in a functional parametric definition;
3) to convert a functional parametric model into an equality-based parametric model, and (in general
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line_5
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through a dialogue with the user, resulting from ambiguity) to convert from equality-based to functional;
and finally
4) to build in the mean time, two parametric models (e.g., one functional, the other equality-based) referring
to the same edited representation (i.e., the same designed instance).

The user interface issues are therefore outside the scope of a data model for parametrics and they will not
be considered in this paper.

3. Commonalities between the different parametric systems

Irrespective of be the underlying mathematical structure of a parametric system, all the systems share a
common software architecture, and address several common issues. We first outline, in this section, the very
specific feature of all the parametrics systems, namely the concept of current instance. We then discuss two
major issues often referred to as topology changes and variable status. This allows us to introduce the pro-
posed framework.

3.1. Two-level data models of parametrics systems

The principal characteristic of all parametric approaches is that the class level, which is in fact a program
(either declarative, imperative, or constraint based), is always designed and represented with one instance.
We call this instance thecurrent instance. Figure 1 shows a very simple example based on numeric expres-
sion. The values which appear on the tree are thecurrent instance values. In fact these values play two roles.
(1) They explicitly represent thecurrent instance. (2) These values stand for variables whose types may be
deduced from the values.

Fig. 3.1: A (parametric) expression interactively designed

Provided that the user builds this expression on the display computer of the CAD system, and provided that
the expression itself is recorded, the (implicit) parametric program is perfectly defined (variable names are
generated by the system):

real: x, y, z, result
integer: i, j, k

z := x - y;
k := i j;

result := z + k;

Fig. 3.2: The corresponding program

One difficulty remains. When the user reintroduces, in a subsequent expression, the value "15.5" on the dis-
play computer, the system can't decide whether it is a new "parameter", or it is the previously computed
value.

(6,5)  - **   (9)

(11.0) (4.5) (3) (2)

+  (15,5)
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Fortunately, this problem does not exist in geometry design. Since the geometric entities are stored in the
CAD system database, the values for thecurrent instance are database pointers. Picking up the same entity
refers to the same database pointer (in thecurrent instance), and therefore to the same variable in the (im-
plicit) program.

Fig. 3.3: A sequence of parametric constructs

When, in figure 3.3, <Point_2> is referred to within the second construct, the implicit variable is clearly
identified.

Since numeric variables are needed in parametric geometric design, (at least for the explicit parameters of
a functional parametric model) the same solution may be applied for the corresponding numeric values of
thecurrent instance. In parametric design, these numeric values are considered as database entities. They
are stored in the database and they may be accessed via a menu or other dialogue conventions (e.g., dimen-
sionning lines). Picking up such a value clearly identifies the (implicitly referenced) variable.

This dual structure of a parametric data model, on the one hand the current instance, on the other hand the
constraints (functions, equations or inequations) that hold for any instance, and that are represented as re-
lationships between the entities that constitute the current instance, suggests a straightforward data model
for parametrics:
- the current instance is a (usual) STEPrepresentation as defined in [ISO 10303-43],and
- this representation is parametric only because some more relationships are recorded between the represen-
tation items that constitute this representation.

If we decide that these relationships are modelled using the Entity-Relationship approach, and that no in-
verse attributes are required (which is true, at least at exchange time) we can introduce parametric capabil-
ities within STEP without any change, neither of the STEP architecture, nor of the modelling tools
(EXPRESS) or implementation forms already defined, nor of all the information models already standard-
ised.

This approach that would consist, in figure 2.1, of assigningrepresentation_item [ISO 10303-43] as the
base type of thedefined andassumed attributes, andrepresentation as the type of thecurrent_instance
one, has already been proposed in [Pierra 94a] [Pierra 94b]. Examples of "STEP-compliant" data models
based on this approach have been demonstrated (from now, as above, we will also use bold font to reference
the items that are formally defined in some STEP EXPRESS model, quoting their source through a refer-
ence to an ISO 10303 document).

However, this data model, where each constraint directly refers to the values that constitute the current in-
stance, can hardly be used as their internal data structureby parametric systems. A parametric system is
intended tomodify the current instance. If the relationship directly refers to current instance:
1) all the "current instances" shall have exactly the same structure, and
2) complex pointer manipulations are required when a new current instance is generated.

This problem has been widely studied in example-based programming [Halbert 84] [Myers 86] [Myers 90]
[Girard 93]. The proposed mechanism, termed pointer variables or dynamic context [Girard 90] [Girard 93],
consists in using indirect pointers.

Like standard programming environments, in example-based programming systems, the (implicit) pro-

projection <Point_2>

<Point_1> Intersection <line_3>

<line_1> <line_2>

Line_by

<Point_2> <Point_3>
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grams contain variables, and the program (dynamic) context contains the values that are linked with the
variables. The specific feature of these kind of systems is that both the dynamic context and the program
are implicitly built when the user designs an example (i.e., the current instance). All created values (in the
example) stand for implicit variable declarations (in the program context). All references to values (in the
example) stand for reference to variables (in the implicit program). One main role of these systems is to
manage the context of the program which ensures the indirect link between example values and program
variables [Girard 93]. Figure 3.4 shows the dynamic context management of an example-based program-
ming system.

A major issue when designing an information model for exchange of parametrics, is to decide whether or
not the dynamic context is to be modelled, and, therefore, exchanged. We discuss in the next section the
possible benefits of the exchange of such a mechanism.

3.2. Change in topology and concept of dynamic context

The mathematical models of parametrics discussed in section 1 highlight the major challenge of the para-
metrics CAD systems. A set of equations may be solved for different sets of values. A composition of func-
tions may be computed for different input values within the domain of the global function. But the set of
variables of the equations, or the domainand range of the different functions shall not change, else the prob-
lem is no longer defined. In terms of geometry, if the constraints directly refer to representation items, and
if some representation items disappear or appear when a new current instance is generated, the parametric
model is no longer defined. For instance, in feature-based modelling using a B-rep modeller, if a particular

11.0
4.5
6.5
3
2
9

15.5

11.0

4.5

6.5

3

2

9

15.5

real_1

real_2
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Example Dynamic_context Program

Fig. 3.4: Dynamic context management of example-based programming systems

+  {real_1}

     -   {real_3} **   {integer_3}
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constraint relates to a particular face, then if this face disappears, the constraint is no longer defined.

To support these kind of changes, we must identify theinvariant of all the possible current instances, and
allow constraints specification only between these invariants. Two solutions may first be considered, either
to use geometric aggregates (a feature is a set of geometric representation items) or to use topology aggre-
gates (a feature is represented as a set of open shells). But the capability to provide finer access (e.g., to the
end face of a sweeped feature) needs a lower level of granularity, and a deep structuring of the invariants.

We propose to use in that intend a concept of dynamic context. A dynamic context consists of
parametric_references (of which the information model is specified in figure 3.5). Each
parametric_reference enables an invariant of a parametric model to be captured.

3.2.1. Underlying principles

The proposed information model is based on two general principles, with a third one specific to functional
parametric models.

1 - Encapsulation principle

All the constraints shall refer only, either as theirassumed or as their defined attribute, to
parametric_references (or variables) that encapsulate the physical representation of the parametric model.

2 - Traceability principle

All the representation_items that constitute the physical representation are referenced by one and only one
parametric_reference.

The third principle addresses only functional parametric data models.

3 -  Functional dependency principle

In a functional parametric model:
- each parametric_reference results from one and only oneparametric_function or other
parametric_reference
- all theparametric_references that belong to theassumedattribute of aparametric_function result from
otherparametric_functions that precede this parametric function in theconstraints list of the correspond-
ing functional_parametric_model.

3.2.2. Concept of parametric reference

A parametric_reference fulfils four roles:

1) It defines the lower level invariants, that result from its creation, and that may be accessed by other con-
straints. It is therefore astructuring mechanism of the parametric model invariants.

For instance, when a circular arc is created as a result of the arc_fillet_2_entities function, this function cre-
ates in the mean time (see [ISO 10303-42] for the definitions of the geometric representation items):
- thecircle that is thebasis_curve of thistrimmed_curve;
- theaxis_2_placementthat is the position of thiscircle;
- thepoint that is thelocation of thisaxis_2_placement;
- possibly, thepoint(s) that are thetrim_1 andtrim_2  trimming point of thetrimmed_curve;
- possibly, thedirections that are theaxis andref_direction of the positionaxis_2_placement.
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Taking into account that the constraints expressed as parametric functions generally result in the creation
of a highly structured set ofrepresentation_items (e.g., a feature in a B-rep model), a
parametric_reference enables a structured set of referencable items to be created.

2) A parametric_reference records the virtual entities that are involved in a parametric model (e.g., a fea-
ture) independently of the physicalrepresentation_items that represent these entities in the current in-
stance. It is therefore an abstraction mechanism for the parametric model invariants.

For instance, a 2D parametric model may contain an optional fillet. This fillet shall exist only if a particular
length-measure is greater than a particular value. Aparametric_reference that stands for this optional fillet
may be involved in, e.g., a symmetry, even if the fillet does not exist in the current instance.

Another example is provided by feature-based modelling. When a depression feature is involved in a de-
sign, the model invariant is the virtual feature itself, and not the set of faces, edges and vertices that represent
the regularised Boolean difference of a solid model with the virtual feature.

To achieve this role aparametric_reference may refer, through its logical attribute, to
representation_items that do not belong to the current-instancerepresentation, but to anotherrepresen-
tation, called thelogical representation.

3) A parametric_reference controls the level of granularity of the items that may be accessed by other con-
straints. It is therefore acontrol mechanism of the referencable items.To achieve this role:
- each subtype ofparametric_reference defines, through itsreferencable_items (derived) attribute, the
otherparametric_references or variables that logically constitute it, and that may be accessed from the
latter constraints;
- all the items in thereferencable_items attribute are declared as OPTIONAL; if some item is not present,
this means that it is not accessible as a logical constituent of theparametric_reference (either it exists in-
dependently, or it is hidden because it is not considered as an invariant).

For instance, acircular_arc_ref  provides an OPTIONAL access to thecircle that constitutes its
basic_curve, and to itstrim_1  andtrim_2 point s. If thecircle is not provided, this means that this circle
is not part of thisparametric_reference. The samecircular_arc_ref  entity may therefore be used both to
define thedefined attribute of the parametric function arc_fillet_2_ent (that creates both a newcircle and
a newaxis_2_placement), and thedefined attribute of the parametric functionarc_circle_2_angle (that
creates only a circular arc using an existingcircle),

4) A parametric_reference refers, through itsphysical_items attribute or by means of thephysical_items
attribute of the otherparametric_references that belong to itsreferenceable_items attribute, to all the
representation_items that represent it in the current instance. It is therefore atraceability mechanism (and
an interactive-user-access mechanism) for all therepresentation_items of the current instance.

3.2.3 Data model of a parametric reference

The following EXPRESS specification defines the information model of aparametric_reference (the
generic_variable entity is discussed in section 3.3; theconstraint entity is defined, using EXPRESS-G [
ISO 10303-11] in figure 2.1).

TYPE param_ref_or_var_select = SELECT (parametric_reference, generic_variable);
END_TYPE;

TYPE param_ref_or_constraints_select= SELECT (parametric_reference, constraint);
END_TYPE;

ENTITY parametric_reference
ABSTRACT SUPERTYPE;
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recorded_logical_items:OPTIONAL LIST[1:?] OF UNIQUE representation_item;
physical_items :LIST[0:?]OF UNIQUE representation_item;
referencable_items :LIST[0:?] OF UNIQUE param_ref_or_var_select;
definition_reference :SET OF param_ref_or_constraints_select;

DERIVE
logical_items :LIST[1:?] OF representation_item

:=NVL (recorded_logical_items, physical_items);
END_ENTITY;

Fig. 3.5 Information model of a parametric model invariant

Thephysical_items andlogical_itemscapture the actual and virtual representation of the invariant. When
both are identical, only the actual representation is recorded. In this case, thelogical_items attribute equals
thephysical_items one (it is the meaning of the NulL Value -NVL- function: if the first argument has no
value, then the value of the second one is returned). Both thephysical_items andlogical_items attributes
are list-ordered because each subtype ofparametric_reference shall contain, as itlogical_items [1]at-
tribute, therepresentation_item of which theparametric_reference is an abstraction.

Thereferencable_itemsattribute captures the whole set ofparametric_references andgeneric_variables
(from [ISO DIS 13584-20]) that result from its definition, and that may be accessed by other constraints. In
a functional parametric model, this attribute defines the newparametric_references orgeneric_variables
that are allowed for use in the latterparametric_functions. This attribute is intended to be derived in any
subtype ofparametric_reference.

Thedefinition_referenceattribute captures the whole set of constraints andparametric_references that
contribute to the parametric definition of the item encapsulated by aparametric_reference. In a functional
parametric model, a global rule ensures that the size of this set equals 1 and that all the
parametric_references that belong to theassumed attribute of aparametric_function result from previ-
ous parametric functions according to the list-order defined by the functional parametric model. This at-
tribute is also intended to be derived in any subtype ofparametric_reference and computed from the
inverse relationships.

3.2.4 parametric reference for geometry models

Each time a new category ofparametric_reference is defined, derivation functions for both
referencable_items anddefinition_reference shall be specified. According to the rules of the EXPRESS
language, such derivation functions may not be redefined in the inheritance tree. Therefore, we define a sub-
type that constitutes the root of the whole sub-tree ofparametric_references corresponding to parametric
geometry. This entity is associated with two global functions that compute these attributes for the whole
supertype/subtype sub-tree ofparametric_references corresponding to the various [ISO 10303-42]
representation_items.

ENTITY geometry_parametric_reference
ABSTRACT SUPERTYPE
SUBTYPE OF (parametric_reference);
DERIVE

referencable_items :LIST[0:?] OF parametric_reference
:= compute_geom__ref_items(SELF);

definition_reference :SET OF parametric_ref_or_constraints_select
:=compute_geom__def_reference(SELF);

END_ENTITY;

Fig. 3.6 Root of the parametric reference entities for parametric geometry

Theparametric_reference entity shall be sub-typed for each type ofrepresentation_item intended to be
referenced by a constraint. This means, in particular for parametric geometry, that
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geometry_parametric_reference shall be subtyped for each type ofgeometric_representation_item and
topology_representation_item specified in [ISO 10303-42], according to an identical subtype/supertype
network, but with a specialisation of the two remaining explicit attributes ofparametric_reference.

The following rules define the systematic process used to associate with eachrepresentation_item its cor-
respondingparametric_reference:
•1) For eachrepresentation_item intended to be parametrically defined, a corresponding subtype of

parametric_reference  is defined.
•2) Eachparametric_reference subtype takes the same name as the correspondingrepresentation_item,

post-fixed by "_ref".
•3) Each attribute, whose type is associated with arepresentation_item entity data type or aggregate of

entity data types, is represented by an attribute of the same name whose optional value is defined as the
parametric_references subtypes that correspond to this entity data type

•4) Each attribute whose value is a number, a Boolean or a string is not represented (it may be queried from
the logical_items[1] attribute)

•5) Each attribute whose type is a select type that involves both a simple type and arepresentation_item
entity data type is represented as an attribute of the same name of which the data type is an (OPTION-
AL) parametric_ref.

Other particular subtypes are defined:
- for the specialisation whose types are required to specify the domain of some parametric functions (e.g.,
trimmed_line_ref andcircular_arc_ref  for 2D parametric model)
- for the logical entities that appear only in parametric geometry (e.g.,parametric_feature_ref,
pattern_ref for simple repetitive shapes, for optional shapes, ...).

Eachparametric_reference subtype declares the referencable items it may consist of. These referencable
items are collected in the derivedreferencable_items attribute by the global function
compute_geometry_ref_items.

For instance, the parametric reference that represents a referencabletrimmed_curve (figure 3.7), that spe-
cialisesparametric_reference through the path (defined from [ISO 10303-42] and [ISO 10303-43]):
bounded_curve_ref, curve_ref, geometric_representation_item_ref,
geometry_parametric_reference, representation_item_ref, parametric_reference:
- declares as (optional)referencable_items its basis curve and trimming points (they are collected in the
derivedreferencable_items attribute by the global derivation function),
- specialises itsrecorded_logical_items as a trimmed curve,
- specialises itsphysical_items attribute as a list of trimmed curves that share the same basis curve (the
trimmed curve of the current instance may be modified by modifying feature [Hoffman 92] such as a fillet)

ENTITY trimmed_curve_ref
SUBTYPE OF (bounded_curve_ref);

SELF\parametric_reference.recorded_logical_items
:OPTIONAL LIST[1:1] OF trimmed_curve;

SELF\parametric_reference.physical_items
:LIST[0:?] OF trimmed_curve;

basis_curve :OPTIONAL curve_ref;
trim_1 :OPTIONAL point_ref;
trim_2 :OPTIONAL point_ref;

WHERE
WR1:(*same basis_curve for the different physical items*)

END_ENTITY;

Fig. 3.7 Example of parametric reference

Such a parametric reference is further specialised into acircular_arc_ref  that specialises thebasis_curve
into acircle_ref and constrains the referencedtrimmed_curves to havecircles as theirbasis_curve (see
[ISO 10303-42]).
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New categories of parametric references may be added by defining new subtypes of the generic resource
parametric_reference and by defining new specific derivation functions that compute the
referencable_item anddefinition_reference attributes across the whole structure of this new parametric
references sub-tree. This mechanism provides for subsequent standardisation of new parametric capabilities
(e.g., parametric form feature) when the technology is mature enough to enable a consensus to be reached.

3.3 Concept of a variable

Besides the reference torepresentation_items, a parametric model also uses variables.

In computer science, a variable consists of three parts:
•1) a syntactical representation that provides a name that enables the variable to be referenced and that spec-

ifies its type of allowed values,
•2) a mechanism, usually termed a context (in imperative programming) or an environment (in functional

programming) that generates by some means (it may be, e.g., stored) the value of this syntactical rep-
resentation,

•3) a function, usually called interpretation function, which bounds the value mechanism to the syntactical
representation.

This threefold concept is modelled in [ISO DIS 13584-20] by a threefold data model presented in Figure
3.8.
•1) A generic_variable entity captures the syntactical representation of a variable and defines, by subtyp-

ing, its allowed type of value. This entity is referenced by e.g., expression, functions,...
•2) A variable_semantics entity captures the mechanism that represents a value.
•3) A relationship, termedenvironment, associates avariable_semantics with ageneric_variable.

Thevariable_semantics data type is an abstract data type that shall be subtyped each time a new  mecha-
nism is to be captured, e. g., the "SELF" keyword of object-oriented languages ( see [ISO CD 13584-24]),
the X-coordinate in some well-defined Cartesian coordinate reference system).

In parametric data models, we want to capture two semantics:
•1) the concept of theinternal_variable; the value of such a variable results from the constraints (or para-

metric functions) that contain its syntactical representation in theirdefined attribute, and
•2) the concept of the formalparameter of a (functional) parametric model; such a variable should not be-

long to thedefined attribute of any (internal) constraint; its value results from an external mechanism
that assigns an actual value to a formal parameter when and where the (functional) parametric model is
involved.
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Fig. 3.8 Simplified data model of variable (from [ISO DIS 13584-20])

From a structural point of view, both types ofvariable_semantics:
- are associated with a name (possibly automatically generated);
- may be associated with a text, that describes its role,
- may be associated with a linear or angle dimensioning that enables to graphically represent its meaning,
and
- is possibly associated with a value that represents the value for the current instance.

Figure 3.9 presents a planning model of the variables involved in parametric modelling.

Fig. 3.9 Planning model of the variables in parametric modelling
(for clarity, the referenced entities are incompletely defined)

In this planning model,text is referenced from thesupport_resource_schema [ISO 10303-41] and
primitive_value from the instance_schema [ISO CD 13584-24]. The complete model of
parametric_model is presented in the next section.

3.4 Four layers architecture of a parametric model

The overall architecture of the proposed framework is defined in figure 3.10. Aparametric_model is arep-
resentation (from [ISO 10303-43]) of which theitems andrepresentation_context inherited attributes are
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derived and equal to the ones of the current instance. Afunctional_parametric_model is a
parametric_model where some rules ensure that the functional dependency principle (see section 3.2.1) is
fulfilled.

For clarity, the logical representation and the current instance are represented separately as two different
ISO 10303-43-representations, and theenvironment andvariable_value relationships and most of the
derived attributes are not represented.

Fig. 3.10 Four-layer architecture of the proposed framework (Planning model)

This diagram emphasises the four layers architecture of the proposed framework:
- The current instance layer is a usual STEPrepresentation. It is only referenced by one (or several) para-
metric definitions by means of a dynamic context.
- The dynamic context layer represents the structural invariant of all the possible instances of the parametric
model.
- The parametric definition layer provides a parametric definition (of any kind, and possibly of different
kinds) of the same current instance.
- The logical representation layer may or maynot exist. Its role is to capture the logical items involved in a
parametric definition when these logical items are not completely represented in the current instance, or
when they have been modified after their creation by a constraint. When it exists, the logical representation
shall use the samerepresentation_context as the current instance.

The required parametric functions are discussed in the next section.

4. Taxonomy of needed parametric functions
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We already pointed out that parametric functions are special cases (in the data model: subtypes) of con-
straints, and may therefore be used in any kind of parametric system. Moreover, the main requirements from
Parts library is the availability of functional parametric model. We have therefore concentrated our work on
this kind of constraints. We present in this section both a taxonomy of the required parametric function and:
1) some generic resources for expressions and whole-part modelling, and
2) a set of constraint-based parametric functions that address our specific requirement.

4.1 Expressions

Expression is one of the generic resources required for all kinds of parametric models. Expressions are di-
rected acyclic graphs whose internal nodes are operators, and whose leaves, in parametric modelling, may
be literal values, variables, or entities of the geometric model. Our parametric data model USEs all the re-
source constructs defined in [ISO DIS 13584-20] (generic_expressions_schema and
expressions_schema).

4.1.1 The different types of expression for parametrics

Our parametric data model provides for four types of expressions.numeric_expressions,
Boolean_expressions andstring_expressions are the resource constructs defined in [ISO DIS 13584-20].
They enable the use of all the operators defined in the EXPRESS reference manual [ISO 10303-11] for sim-
ple types. The fourth subtype ofgeneric_expression, calledparametric_ref_expression is specific to
parametrics. It models thegeneric_expressions that return aparametric_referenceentity.

ENTITY parametric_ref_expression
SUBTYPE OF (generic_expression);

END_ENTITY;

A parametric_ref_litteral  is a special case ofparametric_ref_expression that represents an existing
parametric_reference.

ENTITY parametric_ref_litteral
SUBTYPE OF (parametric_ref_expression, generic_litteral);
the_value: parametric_reference;

END_ENTITY;

4.1.2 Instance access operator

The instance access operator is a 3-ary operator that provides a logical access to the attributes of the current
instance while controlling that this access involves only invariant, i.e.,parametric_references. It is defined
as a subtype of them_ary_gen_expression of the generic expression schema and it takes three operands:
- a parametric_ref_expression, that evaluates to aparametric_reference that encapsulates the accessed
entity,
- astring_expression, that specifies the name of the accessed attribute in the format of an uppercase string,
and
- an optional list ofnumeric_expressions, that specifies, when the attribute is an aggregate (or an aggregate
of aggregates, ...), the referenced items. All these optionalnumeric_expressions shall evaluate to integer.

The instance access operator returns a value of any one of the types:parametric_reference, real, integer,
string or Boolean.
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ENTITY instance_access_operator
ABSTRACT SUPERTYPE OF (int_instance_access_operator,

              real_instance_access_operator,
              string_instance_access_operator,
              boolean_instance_access_operator
              parametric_ref_instance_access_operator)

SUBTYPE OF (m_ary_gen_expression);
access_to: parametric_ref_expression;
attribute: string_expression;
index: OPTIONAL LIST [1:?] OF numeric_expression;

END_ENTITY;

Five subtypes enable to specify the type of result of aninstance_access_operator. These subtypes provide
for strong type checking and allow to involve the result of aninstance_access_operator in a simpleex-
pression conforming to theexpression_schema [ISO DIS 13584-20]. They are declared for instance as:

ENTITY int_instance_access_operator
SUBTYPE OF (integer_defined_function, instance_access_operator);

END_ENTITY;

and

ENTITY parametric_ref_instance_access_operator
SUBTYPE OF (parametric_ref_expression, instance_access_operator);

END_ENTITY;

The role of these operators is twofold:
•1) to compute the value of any simple attribute or member of an aggregate attribute of a

parametric_reference that corresponds either to aparametric_referenceor to a simple value, and,
•2) to capture a reference by its role, and not by its value.

To achieve this goal this operator processes as follows:
- if the referenced attribute refers to aparametric_reference return it;
- if the referenced attribute is a simple type value, return it;
- if the referenced attribute is not defined in theparametric_reference data type, or is defined but has no
value, access to the first attribute of thelogical_items list and query the same attribute name, then:
• if this attribute does not exist, return UNKNOWN,
• if the attribute exists and is of simple data type, return it,
• if the attribute exists and is ofrepresentation_item data type, return the
parametric_reference that encapsulates this entity by referencing it in itslogical_items

  list.

This operator enables for instance:

(1) When acircular_arc  is created as a fillet between two entities, to access to its radius through the ex-
pression (defined, in the exchange file conforming to [ISO 10303-21], as a tree - see [ISO DIS 13584-20]):
real_instance_access_operator
(
parametric_ref_instance_access_operator(#<integer>, 'RADIUS', $),
'ITS_CIRCLE', $
)

(2) When a circle is created by circle_radius_a2p [ISO 13584-31] (defined by its position and its radius) to
access to its centreas the centre of this circle, and not as the point that represents it in the current instance
(capture the user intend independently of the structure of the current instance). If the circle is latter redefined
through a constraint-based definition, the reference will represents the centre of the new circle.
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4.1.3 Geometric-numeric operators

Geometric_numeric_operators are operators whose domains are defined as a set of
geometric_representation_items or topological_representation_items [ISO 10303-42] and that com-
pute a real value.

Seven such operators (declared as subtypes ofnumeric_defined_function USEd from [ISO DIS 13584-
20]) are defined. Their signatures are:

distance : point_ref_or_vertex_ref x point_ref_or_vertex_ref ->REAL
x_coord : point_ref_or_vertex_ref->REAL
y_coord : point_ref_or_vertex_ref->REAL
z_coord : point_ref_or_vertex_ref->REAL
angle : linear_ent_ref x linear_ent_ref-> REAL
start_angle : circular_arc_ref -> REAL
end_angle : circular_arc_ref -> REAL

Wherelinear_ent_ref is a select type that stands fordirection_ref, line_ref, plan_ref, trimmed_curve of
which thebasis_curve is a line or one of the differentbounded_surfaces of which the basis surface is a
plane.

4.1.4 Generic expressions

As a result of these operators, an instance of ageneric_expression in our parametric model is a recursive
structure that may contain any number ofinstance_access_operator, geometric_numeric_operators and
operators defined for number type, string type and Boolean type in the EXPRESS reference manual [ISO
10303-11].

Two functions are associated with ageneric_expression:
- theused_gen_variables function (specified in [ISO DIS 10303-20]) computes all thevariables used in a
generic_expression tree, and
- thepm_used_item function (defined in our parametric model) computes all theparametric_references
used in ageneric_expression tree.
These functions enable to assert that, in a functional parametric model, no forward references are done.

The correctness of ageneric_expression is checked at run-time. If an expression is not correct (possibly as
a result of the values assigned to the parameters of the current instance), this only means that the functional
parametric model fails. The user dialogue to be possibly implemented in this case is outside the scope of
this data model.

4.2 Canonical parametric function

The first subtype ofparametric_function required for any kind of parametric modelling is the function that
associates with each attribute of a parametrically-definedrepresentation_item, the specification of its val-
ue through ageneric_expression, or, when the value of some attribute is an aggregate, trough an aggregate
of generic_expressions. We call such a parametric function acanonical parametric function.

Different data models may be considered to capture such a parametric function. One method, proposed in
[PIERRA 94a], consists in defining a tree structure of canonical parametric functions. Each canonical para-
metric function corresponds one to one to eachrepresentation_item data type. Its definition and subtype/
supertype structure is systematically derived from the definition and subtype/supertype structure of the cor-
respondingrepresentation_item data type ( see [PIERRA 94a]).
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Another method, that we propose in this paper (see figure 4.1), consists in defining one unique canonical
parametric function that applies to any parametrically-defined representation item, with  the specification
of a mechanism to relate eachgeneric_expressionwith a well-identified attribute of the parametrically-de-
fined representation_item. The powerful expression structure defined in section 4.1 provides a large ex-
pressive power to this canonical parametric function.

The basic idea of this approach is to use pattern matching with the physical file structure (conforming to
[ISO 10303-21]) of the createdrepresentation_items. We note that a canonical parametric function only
defines one representation_item, that this representation_item is encapsulated by one
parametric_reference that refers to it through itslogical_items[1] attribute, and that this
parametric_reference does not contain any otherparametric_reference. Therefore, the structure of the
correspondingrepresentation_item in the current instance (or logical instance) may be used for matching
eachgeneric_expression with the attribute value it corresponds to. The data model is as follows:

ENTITY canonical_parametric_function
SUBTYPE OF parametric_function;

SELF\constraint.defined: LIST[1:1]OF parametric_reference;
Instance_spec: simple_or_complex_instance_spec;

DERIVED
used_var        : SET OF generic_variables

:=used_gen_variables_in_instance_spec(SELF.instance_spec);
used_ref        : SET OF parametric_reference

:=used_param_ref_in_instance_spec(SELF.instance_spec);
SELF\constraint.assumed:LIST[0:?] OF param_ref_or_var

:=set_to_list(SELF.used_ref + SELF.used_var);
WHERE

WR1: SELF\parametric_function.defined[1].referencable_items=[];
END_ENTITY;

Figure 4.1 Proposed data model for canonical parametric functions

The set ofgeneric_expressions is structured according to thesimple_or_complex_instance_spec data
type that enables to associates unambiguously eachgeneric_expression with each attribute of a
representation_item. The following EXPRESS-G diagram defines the data model of a
simple_or_complex_instance_spec.

Fig. 4.2 Structured set of generic expressions associated with the attributes
 of a parametric reference instance

The association of thegeneric_expressions is done as follows.

1) Compute the evaluated set that correspond to the subtype/supertype expression in which is involved the
uniqueSELF\parametric_function.defined[1].logical_items[1].representa-tion_item instance, as spec-
ified in Annex B of [ISO 10303-11].
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2) Determine the mapping rules to apply to this instance, as specified in [ISO 10303-21], clause 11.2.5.1.
If these rules define an internal mapping, thesimple_or_complex_instance_spec shall be a
simple_instance_spec, else, it shall be acomplex_instance_spec.

Then associate each attribute that should explicitly appear in a physical file conforming to [ISO 10303-21],
conformance class 1, to describe this instance with ageneric_expression of theinstance_specattribute fol-
lowing the tree structure presented forsimple_or_complex_instance_spec in figure 4.2.

Each attribute that should appear as an undetermined ('?') value shall be associated with an undeterrmined
expression. Each attribute that should appear as an integer shall be associated with anumeric_expression
that evaluates to integer value. Each attribute that should appear as real, Boolean, string or entity name shall
be associated with a numeric_expression, Boolean_expression, string_expression or
parametric_ref_expression respectively. Each attribute of aggregate data type shall be associated with a
list of generic_expressions of which the base type matches with the base type of the aggregate, as defined
above for simple values. If the attribute data type is either a list or an array, each generic expression corre-
spond one to one to each value of the aggregate. If the attribute data type is either a bag, or a set, the number
of generic_expressions shall be equal to the number of members of the aggregate, but the list order of the
generic_expressions is meaningless.

4.3 Assembly design and whole/part modelling

The second kind of parametric functions, that we call parametric whole/part modelling, are intended to pro-
vide the capability to insert a parametric model (or a non parametricrepresentation) within an embedding
parametric model (or non parametricrepresentation). We call the embedded parametric model an occur-
rence and the embedding parametric model a (instance of) parametric model. Parametric whole/part mod-
elling defines a recursive representation structure where instances are inserted as occurrences within the
context of other instances.

Parametric whole/part modelling involves a three level architecture where the parametric model, that con-
stitutes the class level represents a family of cognate representations (e.g., all the possible blocks), where
the instance level represents one particular representation of this family (e.g., one block of a given size) and
where the occurrence level represents its insertion within an embedding representation (e.g., as a
mapped_item from [ISO 10303-43]).

Fig 4.3 Parametric whole-part modelling

The very specific feature of parametrics, namely the fact that the class level is, in the mean time, an instance
through the concept of current instance, enables to consider two different possible data models for these
three levels.

In any cases, parametric whole-part modelling shall ensure the following:

•1) An occurrence shall be re-evaluated each time the embedding instance is re-evaluated to ensure that the
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constraints that specify both the positioning (location and orientation) and the dimensioning of the oc-
currence by reference to the embedding instance still hold.

•2) All the references from the instance to somerepresentation_items of the occurrence shall be preserved
despite this re-evaluation.

The structure of a parametric whole/part model is therefore heavily dependant on:

•1) the constraints that specify the occurrence by reference to its embedding instance, and
•2) the level of granularity of the occurrence items that are accessible, for reference, from its embedding

context.

The major challenge of parametric whole/part modelling, that is still a very competitive process, is to
achieve four objectives:
•1) to enable a great flexibility for occurrence specification,
•2) to provide a fine grain access (e.g., everyrepresentation_item) to occurrence internal representation,
•3) to ensure a re-evaluation process as deterministic as possible, and, finally
•4) to ensure a fast re-evaluation of the complete model

These objectives are conflicting with each other: the more flexible solution that would be to consider the
completewhole/part structure as a global equality-based parametric model conflicts both with the required
determinism and the requirement for fast re-evaluation. Therefore different structures shall be designed for
the different kinds of requirements. Table 4.4 summarizes the minimal requirements for the differents kinds
of parametric whole/part modelling.

Table 4.4 Minimal requirements for the different kinds of parametric whole/part modelling.

In our framework, to design a data model structure for one kind of whole/part modelling means the follow-
ing:

•1) to define how the instance is modelled (e.g., as thecurrent_instanceof the class level or as a separate
entity);

•2) to define how the occurrence is represented in thecurrent_instance representation of the embedding
instance (e.g., as amapped_item, or as arepresentation_relationship_with_transformation, both
from [ISO 10303-43]).
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•3) to define the content of theparametric_reference that provide for reference to the content of the oc-
currence,

•4) to define the constraint that create the occurrence, and
•5) to define the other constraint that may access to theparametric_references andvariables generated by

the occurrence creation.

We propose in the next section a complete data model for the insertion of a functionally-defined parametric
occurrence, that is intended to be globally accessed within the context of an embedding parametric instance.
This data model addresses the minimal requirement for the insertion of a (parametrically-defined) standard
part within a parametrically-defined product. We then discuss in the next section 4.3.2 how some other re-
quirement may be addressed in the context of our proposed framework.

4.3.1 Parametric functional mapping

4.3.1.1Representation of the instance level

In functional parametric modelling therepresentation of an instance is completely characterised by the
value of its parameters. Therefore the data structure of an instance representation, called a
pm_representation_instance, may be completely different from the parametric model it corresponds to.
Provide that the instance refers to its source parametric model and contains the value for its parameters, the
constraints need not to be duplicated within the instance: the same representation, with its complete con-
straint structure and logical representation, may be generated again just by assigning the instance parameter
values to the parametric model parameters. This allows to have different instances referring to the same
parametric model. Such instances may have completely different parameter values from the
current_instance represented in theparametric_model. It shall be underlined that this approach is the
usual approach in the class/instance object oriented paradigm. The instance only contains its attribute val-
ues. The behaviour is factored at the class level.

Moreover, if some permanent names are assigned both to the parametric model and to its parameters (using
e.g., [ISO DIS 13584-42]), the parametric model itself may not be represented in the same exchange con-
text.

Finally, if we assume that the parametric model is available on the receiving site (or exchanged in the same
exchange context as its instances and possibly occurrences), the content of the instancerepresentations do
not need to be represented: they may be generated again on the receiving site. To ensure that such an "emp-
ty" representation is nevertheless arepresentation conforming to [ISO 10303-43], and that the instance
may be mapped (as an occurrence) within the context of its embedding instance, we propose that it contains
one item in itsitems attribute: theaxis_2_placement that represents the reference coordinate system of the
instance.

occurrence_valuesparametric_definition
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items  S[1:1]

           (ABS)

parametric_model_id

variable_value

         (ABS)

variable_semantics instance_value
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Fig. 4.5 Proposed information model for a functional parametric model occurrence

Figure 4.5 presents the proposed information model for an instance of a (functional) parametric model that
is intended to be separated from its source parametric model. The abstractparametric_model_id entity en-
ables to reference either aparametric_model or an externally defined parametric model. The
explicit_pm_representation_instance contains, in its items inherited attributes, all the
representation_items that represent the instance. Theimplicit_pm_representation_instance subtype
only contains, in itsitems inherited attribute, anaxis_2_placement.

4.3.1.2Mapping of the occurrence

At thecurrent_instance level of the embeddingparametric_model, the occurrence insertion is represent-
ed as a mapped_item [ISO 10303-43] of which the mapping_source contains the
pm_representation_instance as itsmapped_representation, and the occurrenceaxis_2_placement ref-
erence coordinate system as itsmapping_origin.

4.3.1.3Parametric reference

The occurrence may only be accessed globally (for, e.g., inserting a replica) from the embedding instance.

ENTITY mapped_occurrence_ref
SUBTYPE OF (geometry_parametric_reference);

SELF\parametric_reference.physical_items: LIST[1:1]OF mapped_item;
occurrence_parameters: LIST[0:?]OF variables;
position: OPTIONAL axis_2_placement_ref;

WHERE
(*not exists recorded_logical_item*)

END_ENTITY

Figure 4.6 Parametric_reference for a functional parametric model occurrence

Thisparametric_reference provides access (through itsreferencable_items derived attribute) to the vari-
ables that represent the occurrence parameters (they may either be used in latter constraints or, if the em-
bedding model is not a functional one, defined through constraints), and, possibly, if it is created during the
occurrence insertion (e.g. because the user has defined interactively the positioning of the part by dragging
it) to theaxis_2_placement on which the instancemapping_origin shall be mapped. Obviously, the oc-
currence parameters shall be the same as the one of the corresponding instance. Changing these parameters
would generate a new instance, and then its mapping as the new representation of the occurrence. Finally,
a where rule specifies that the logical item shall be the same as the physical item: the occurrence cannot be
changed but by its parameter values.

4.3.1.4Parametric definition

A functional_occurrence_definition is aconstraint that specifies the occurrence to be embedded within
the context of some instance. It specifies, by a value of iparametric_model_id, the referenced parametric
model. Its may define the position of the occurrence as an existingaxis_2_placement computed by a
parametric_ref_expression, (else an axis_2_placement_ref is generated by the created
mapped_occurrence_reffor latter positioning through constraints). It may also specify, as a list of optional
expressions, some of the occurrence parameter values. In the embedding parametric model, the occurrence
parameters may then be further specified through others constraints.

A functional_occurrence_definition also contains a subtype, called
functional_occurrence_functional_definition, that is aparametric_function. This subtype shall be used
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if the embedding parametric model is a functional one. This subtype completely specifies the mapped oc-
currence. It specifies all the values of the occurrence parameters by means of a list ofexpressions, and the
position of the occurrence as aparametric_ref_expression. If the occurrence is interactively positioned,
the system generates as a separate parametric function, the canonical definition of theaxis_2_placement.

ENTITY funtional_occurrence_definition
SUPERTYPE OF (funtional_occurrence_functional_definition)
SUBTYPE OF (constraint);
SELF\constraint.defined: LIST[1:1]OF mapped_occurrence_ref;

parametric_model_source: parametric_model_id;
occurrence_dimensionning: LIST[0:?] OF OPTIONAL expressions;
position: OPTIONAL parametric_ref_expression;

DERIVE
SELF\constraint.assumed: ...
WHERE...

END_ENTITY;

ENTITY funtional_occurrence_functional_definiton
SUBTYPE OF (funtional_occurrence_definiton, parametric_function);
SELF\funtional_occurrence_definition.occurrence_dimensionning

: LIST[0:?] OF expressions;
SELF\funtional_occurrence_definition.position

: parametric_ref_expression;
END_ENTITY;

Fig. 4.7 The parametric functions that inserts an occurrence of a functional parametric model in an embed-
ding parametric model

4.3.1.5User dialogue

The user dialogue issues are outside the scope of this data model. Nevertheless, checking whether, or not,
some user dialogue may be defined to populate this data model enables to validate it from an activity model
point of view. We briefly outline the different steps of an example of creation dialogue:

1 - The user selects thefunctional_occurrence_definition command.

2 - Theparametric_model is identified by some means (menu, name,...).

3 - An occurrence is instanciated, with the dimensions of thecurrent_instance in the referenced parametric
model. The system generates thepm_representation_instance and itsrepresentation_map. It maps it on
(e.g., ) the reference coordinate system of the embedding instance and built the corresponding
mapped_item. Themapped_occurrence_refis created and initialised. Then the occurrence is displayed.

4 - The user defines the location of the occurrence either by picking up some (referencable)
axis_2_placement or by building aparametric_ref_expression, or by dragging the existing occurrence.
Themapped_occurrence_ref andmapped_item entity are up-dated accordingly.
If the selected command wasfunctional_occurrence_definition, the process resulting from this command
is achieved. The user may, latter on, assign constraints to the occurrence parameters (ensuring its latter re-
evaluation).
If the selected command wasfunctional_occurrence_functional_definition, the following step is per-
formed.

5 - The user select successively, and, by some means (menu, name, picking a dimension line), each param-
eter, then, using the display calculator, its value is specified as ageneric_expression.

4.3.2 Support of the other whole/part requirements
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We briefly discuss, in this section, how the other requirements for whole/part parametric modelling may be
addressed at the three levels of the representation of the instance to be mapped, of the occurrence mapping,
and at the level of the dynamic context (i.e., the set ofparametric_reference andvariables that enable ac-
cess to the occurrence).

4.3.2.1Representation of an instance

When a parametric model is not functional (what is the general case for representation of a product involved
in an assembly, or for an equality-based parametric contour) or when an access shall be provided to the in-
ternal structure of the occurrence while ensuring the correctness of the parametric whole/part assembly re-
evaluation, the instance shall not only contain its representation, but also theparametric_references re-
quired to encapsulate the invariant of its representation.

Theseparametric_references shall be:
- inserted in the context of the embedding instance to provide for reference, and
- associated one to one with theparametric_references of the parametric model that defined the occur-
rence to provide for occurrence re-evaluation.

Two approaches may be considered to represent such an association:
•1 - to give a permanent name, (e.g., an index number), to eachparametric_reference of a parametric mod-

el, and to use this permanent name in each occurrence (and embedding instance) to ensure the matching.
•2 - to directly refer (i.e., through their entity names) to theparametric_reference of the source parametric

model.

The first approach might allow to separate the parametric model from its occurrence. It might be usefull
(and might be introduced in our framework) for functional parametric models that describe standard parts
in a library. For the other kinds of parametric whole/part modelling, this separation does not seem to be re-
quired. The parametric model is usually considered as available in the same exchange context as its occur-
rences, and it may be directly referenced. Moreover, both for assembly design and for equality-based
contour, only one dimensioning of every occurrence generally exist: precisely the size of the
current_instance of the parametric model itself.

Therefore, for these two applications (and unlike in section 4.3.1), theparametric_model itself may be
consideredas the instance representation. For these two cases of application, to separate the instance from
the parametric model itself seems useless. Taking into account that (through its current instance) the
parametric_model is a representation, we propose to consider that theparametric_model itself is the
instancerepresentation (and therefore to duplicate the parametric model if different instances are needed).

4.3.2.2Representation of the occurrence

When inserted in an embedding instance, thisrepresentation is either mapped (for assembly design), or
transformed, representation item by representation item (for equality-based contour) in the embedding rep-
resentation. In the latter case, the whole set ofparametric_references of the source parametric model are
duplicated (with a reference to their source) in the dynamic context of the embedding instance.

Using themapped_item construct for assembly design avoid to duplicate the whole representation of the
constituant component, but it does not allow to define to positioning of the component through constraints.
The solution we suggest is the following. When the user want to specify a constraint between two
representation_items of two different components, the system identifies (in the corresponding parametric
model) the parametric_references they correspond to. It instanciates the corresponding
parametric_reference within the dynamic context of the assembly, and itsrepresentation_item in the
current_instance of the assembly. This representation_item is defined in the same
representation_contextas the component, therefore the constraints enable a constraint-based positioning



29

of the product.

Regarding feature-based modelling, for both linear and revolving sweeps (but not for modifying features
such that rounding, fleeting [Hoffman 92]) the global logical form of the feature (whether it is a protrusion
or a cut) is recorded in the logicalrepresentation of the embedding instance. The physical representation,
that correspond to thecurrent_instance only contains the low-level B-rep entities that represent the result
of the feature.

4.3.2.3The dynamic context level

For equality-based contour, the dynamic context level contains aparametric_referenceentity for every
representation_items of the contour, and for every points of the face the contour belongs to.

For assembly design, the dynamic context may contain onlyparametric_references for those entities
which are referenced by user-defined positioningconstraints (see section 4.3.2.2).

It is for feature-based modelling that the dynamic context proves the more useful:
•1) it allow a fine grain access to thelogical entity that constitute the feature, and
•2) it records the feature collision [Summer 91] [Hoffman 92] in which the feature is involved.

In a B-rep modeller, afeature_ref defines an ordered list offace_refs, a set offeature_collision_refs and
a set ofdatum_refs. It refers through itsrecorded_logical_items attribute to ashell stored in the logical
representation and do not refer to any physical representation (on the receiving system, the physical repre-
sentation may be represented as e. g., a selective geometric complex [Rossignac 89] if the system supports
such a representation). Aface_refs definesloop_refs and refers both to a logicalface and to a set of phys-
ical faces. The same structure is defined for the lower level topological items. This structure enables to spec-
ify constraints (or parametric functions) on the logical faces, and not on the low-level set of faces that are
represented in the physical model.

4.4Constraint-based definition

The third kinds of parametric functions required for parametric modelling are the functions that create one
(or several) newrepresentation_items through a number of constraints with other pre-existing
representation_items. We call these parametric functionsconstraint_based_parametric_definition.

To design a standard forconstraint_based_parametric_definition needs to address two problems. (1)
How to select the standardconstraint_based_parametric_definitions. (2) How to remove ambiguity for
the ambiguous geometric construct.

Concerning the first point, no definitive solution may be frozen. New functions will continuously be devel-
oped, and new exchange requirements will emerge. Our proposed framework enables to integrate such a
progressive standardisation process. Moreover, to allow the exchange of data models that contain some sys-
tem-specificparametric_functions, two mechanisms may be used. The first one, when it is feasible, con-
sists in expressing the system-specific parametric construct in terms of the existingparametric_functions
andgeneric_expressions. The second one is to use the following predefined parametric constraint and
function:

ENTITY non_standard_constraint
SUBTYPE OF (parametric_function);

utilities: LIST [1:?] OF generic_expressions;
supplier_name: label;
software_product: label;
description: text

DERIVE
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used_var:SET OF generic_variable:=used_gen_variables_in_aggregate(SELF.utili-

ties);
used_ref:SET OF parametric_reference:=used_param_ref_in_aggregate(SELF.utili-

ties);
SELF\constraint.assumed:LIST[0:?] OF param_ref_or_var

:=set_to_list(SELF.used_ref + SELF.used_var);
END_ENTITY;

ENTITY non_standard_parametric_function
SUBTYPE OF (parametric_function, non_standard_constraint);

END_ENTITY;

These entities enable both to store and to exchange proprietary parametric model in the standard exchange
format, while insuring the formal correctness of the data model (e.g., composition order of the parametric
function). The user dialogue to be implemented on the receiving system to interpret unknown extensions is
outside the scope of this data model.

As far as the Parts Library requirements are concerned, the minimal set of needed
constraint_based_parametric_definitions has already been identified. This set only addresses 2D et CSG
solid parametric representation. We suggest to use this set of constraint-based parametric functions, togeth-
er with thecanonical_parametric_function defined in section 4.2, as a first resource schema for paramet-
ric geometry, just extending it with parametric functions for lines and circles (in ISO DIS 13584, all the 2D
curve-oriented parametric functions specify bounded-curves). Figure 4.8 present the list of the ISO DIS
13584-31 functions.

Direction

Dir_2_Pnt Direction vector defined by two points

Dir_2_Dir_Angle Direction vector defined by two directions and an angle

Dir_A2p_X X direction from an axis2_placement

Dir_A2p_Y Y direction from an axis2_placement

Dir_A2p_Z Z direction from an axis2_placement

Axis2_placement (Local Coordinate System)

A2p_3_Pnt Axis2_placement by 3 point

A2p_2_Dir Axis2_placement by 2 direction and 1 point

A2p_2_Dir_Xy Axis2_placement by 2 direction (Ox) and (Oy) and 1 point

A2p_Position_Relative Axis2_placement positioning relative

A2p_Ref_Sys Axis2_placement by reference system

Points with numeric definition

Pnt_Cartesian_Relative Point cartesian relative

Pnt_Polar_Absolute Point polar absolute

Pnt_Polar_Relative Point polar relative

Pnt_Cylinder_Absolute Point cylinder absolute

Pnt_Cylinder_Relative Point cylinder relative

Points with constrained based definition

Pnt_Begin_Ent Point at begin of a curve entity

Pnt_End_Ent Point at end of a curve entity

Pnt_Intersection_2_Ent Point at intersection of two entities

Pnt_Tangential_Arc Point tangential to a circular arc with one direction

Pnt_Centre_Arc Point at centre of a circular arc
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Pnt_Middle_Ent Point in the middle of a basic entity

Pnt_Projection_Ent Point as a projection on an entity

Pnt_Projection_A2p Point as a projection on an a2p entity

Trimmed line

Lin_2_Pnt Line segment between two points

Lin_Pnt_Length_Dir Line segment by start point, length and direction

Lin_Tangential_Arc Line segment tangential to circular arc from a point

Lin_Tangential_2_Arc Line segment tangential to two Circular arc

Lin_Chamfer_2_Lin Line segment as chamfer of two line segments (modifying feature)

Circular_arc (trimmed_circle)

Arc_3_Pnt Circular arc by three points

Arc_Rad_2_Angle_A2p Circular arc by radius and two angles

Arc_Rad_3_Pnt Circular arc by radius and three points

Arc_Rad_2_Pnt_A2p Circular arc by radius, two points and axis2_placement

Arc_Fillet_2_Ent Circular arc as fillet between two entities (modifying feature)

Arc_Tangential_2_Ent Circular arc tangential to two entities

Arc_Rad_2_Ent Circular arc defined by its radius and two entities

Arc_3_Ent Circular arc defined by three entities

Conics and trimmed conics

Ellipse_2_Diameter_A2p Ellipse by two diameters and placement

Elc_Gen Elliptical arc generation

Hyp_Gen Hyperbolical arc generation

Par_Gen Parabolical arc generation

Polyline

Pln_Cartesian_Coordinate Polyline by list ofcartesian coordinates

Bounded_surface_curve (planar)

Ctr_Gen Generation of a contour from curves

Curve_bounded_surface (planar)

Aps_Gen Generation of a planar surface from its boundaries

Special purpose CSG solid (pipe entity)

Sld_Pipe Generation of a pipe

Group structure (geometric_set)

Create_Grp Create group

Close_Grp Close group

Reopen_Grp Reopen group

Remove_Ent_Grp Remove entity from group

Gather_Ent_Grp Gathering entity into new group

Add_Ent_Grp Adding entity into group

Geometric_set_replica

Dup_Mirror_Ent Duplicate and mirror entity or set

Dup_Shift_Dir_Ent Duplicate and shift an entity or set defined by a direction and length

Dup_Shift_Displacement_Ent Duplicate and shift an entity or set defined by displacements

Dup_Rotate_Ent Duplicate and rotate an entity or set
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Fig. 4.8 Constraint-based parametric functions defined by [ISO DIS 13584-31]

Concerning ambiguity removal, [ISO DIS 13584-31] specifies very precisely the ambiguity removal pro-
cess on the basis of entity orientation. Therefore, it would be possible to refer to this specification for the
description of the standardconstraint_based_parametric_definitions. The only changes would be:
•1) to add for each reference (in theassumed list) to an entity, an additional attributesame_sense : Boolean

(in interactive design, this attribute will be computed by the interface, cf. figure 2.3), and
•2) in the specification of the parametric function, to remove all the duplication of entities used as input pa-

rameter (the goal of ISO DIS 13584 is to drop any parametric link between entities, when the goal of
the parametric data model is precisely to record then).

4.5 Alternative and repetitive shape aspects

The fourth kinds of parametric functions required for parametric modelling is the capability to capture, in
the same parametric model, various possible instances that contain alternative or repetitive shape aspects.
This capability is intended to provide functional parametric data model with the same expressive power as
variant programming [ROLLER 91], largely used in the previous generation of CAD system.

In the present parametric CAD systems, such a capability is generally restricted to the concept of "patterns"
(see figure 4.9), where the same feature is repeated according to some predefined pattern structure. Few sys-
tems for instance are able to design a block with a set of holes, the number of holes depending on the length
of the block. None of them, to our knowledge, are able to design general purpose recurrence-based repeti-
tive patterns such that each shape aspect depends on the previous one (see figure 4.9). An approach based
on context structure has already been proposed [GIRARD 92] [PIERRA 94b]. It might be modelled within
the framework proposed in this paper.

Fig. 4.9 Simple patterns and recurrence-based repetitive shape aspects

5 Implementation and further research

With the support of the ESPRIT PLUS project, we have developed a 2D functional parametric system based
on the architecture proposed in this paper. The goal was both to extend the expressive power of the existing
parametric systems towards alternative and repetitive shape aspect specification and to investigate the rela-
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tionships between design history (the systematic and implicit capture of all the design process) and func-
tional parametric model as defined in section 2. Through a structure of the dynamic context, this system
support parametric whole/part modelling and any kind of alternative or repetitive shape, even those where
a general recurrence relationship exist within the shape repetitive pattern. In this system, the parametric def-
inition is captured during the design, but we have developed a powerful graphical modification ("debug-
ging") environment.

At any phase of the design process, it is feasible to modify any constraint or entity. When the user pick up
an entity for modification, the system returns to the state where this entity was created. It is then possible
to change (graphically) its nature or its constructive process, to insert at this place an additional set of con-
structive steps, or to remove a set of entities (and their functional specification). When any modification is
performed, the system checks the remaining part of the parametric specification for consistency and, when
some parametric references belonging to theassumed part of some latter constraint have been removed,
asks for a new parametric specification of the corresponding entities. All these feature demonstrate the ex-
isting difference between functional parametrics and design history.

An interesting feature of our approach is that the implementation of parametric capabilities on some existing
CAD system requires very few modification of the kernel CAD system [Girard 92] [Potier 95]. We are now
developing some prototype implementation on a B-rep modeller, to validate our proposal for feature-based
modelling, and a post processor that generates from our parametric internal data model an exchange file
conforming to the EXPRESS specification proposed in this paper.

Regarding the development of a complete pre-normative proposal for the exchange of parametric data mod-
el, we are now discussing in the SC4 standardization arena the proposed framework. Once a framework is
agreed, the development of such a document requires a very precise specification of all the parametric func-
tions and constraints allowed for exchange. We plane to develop this specification for the (restricted) part
that address the requirements of ISO 13584: functional parametric model for 2D and solid geometry sup-
porting general alternative et repetitive shapes. We hope to collaborate with other projects for the specifi-
cation of equality-based parametric capabilities and the refinement of feature-based modelling.

Conclusion

Over the last few years, a lot of progress have been achieved in product data technology. The first release
of STEP has been issued, and more and more companies invest in its practical use. The P-LIB standard that
provides for electronic data dictionary modelling and for parts library management and exchange is emerg-
ing. Several prototype implementations have already been developed. A masterpiece is still missing: the ca-
pability to model and to exchange parametric models, either to capture, together with a product, its design
intend, or, to store, in a parts library, a unique parametric model able to generate the shapes, or other repre-
sentations, of all the parts of a part family. The requirements appear as slightly different. The P-LIB require-
ments are restrictive but well defined. The STEP requirements are much broader but still not precise.

In this paper we have presented a global framework intended to fulfil both kinds of requirements. Its general
architecture should be able to support the foreseeable progress of the parametric technology, and a progres-
sive standardisation process. Its already achieved information models fulfil the requirements defined for
parts library modelling and exchange.

This framework is based on three ideas. The first idea is that a parametric product/partis a product. To as-
sociate to a product its parametric definition (or definitions) does not change the product, nor its data model.
It only enlarges its information model. By defining a parametric (representation) model as a subtype of rep-
resentation, and by orienting the references from the parametric definition to the product data, i.e., without
any change of the product data itself, we have shown in this paper that parametric capabilities might be in-
troduced in the context of STEP and P-LIB without any change of the information models (e.g., Integrated
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Resources, Application Protocols) already developed.

The second idea is that, even if parametric encapsulates in fact a process, this process is usually stored in
the database of parametric systems. Therefore, it should be feasible to capture this implicit process in a data
specification language. Using a meta-programming approach, where the process is captured through an ab-
stract syntax tree, we have proved that parametric model may be captured and exchanged without any ex-
tension neither of the EXPRESS language, nor to its implementation forms (Physical files, SDAI).

The third idea is to try to remove the foreseeable limitations of the parametric technology through an anal-
ogy with similar domains. In programming languages, the major limitation with e.g., FORTRAN was the
static context management. The introduction of a fine (and dynamic) context management provided the
modern capabilities for, e.g., recursivity, dynamic variables and object oriented environment. In this paper
we have proposed to introduce a concept of dynamic context as an abstraction level between the parametric
specification and the low level physical geometric model. This structure provides for feature-based model-
ling and should support the foreseeable progress towards the specification of alternative shapes, general re-
petitive shapes, and, possibly, recursive shapes.

This framework, which improves a first proposal presented in [Pierra 94a] [Pierra 94b], is intended to be
circulated in the standardisation arena before summer 1996. Improved by this international review process,
it is hoped it may emerge as a standard in the very next years.
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